Advertisements
Advertisements
प्रश्न
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
उत्तर
\[\text { We have,} \]
\[f\left( x \right) = x^3 + a x^2 + bx + c\]
\[ \Rightarrow f'\left( x \right) = 3 x^2 + 2ax + b\]
\[\text { As,} f\left( x \right) \text { is maximum at x = - 1 and minimum at x = 3 }. \]
\[\text { So,} f\left( - 1 \right) = 0 \text { and } f\left( 3 \right) = 0\]
\[ \Rightarrow 3 \left( - 1 \right)^2 + 2a\left( - 1 \right) + b = 0\text { and }3 \left( 3 \right)^2 + 2a\left( 3 \right) + b = 0\]
\[ \Rightarrow 3 - 2a + b = 0 . . . . . \left( i \right)\]
\[\text { and }27 + 6a + b = 0 . . . . . \left( ii \right)\]
\[\left( ii \right) - \left( i \right), \text { we get }\]
\[27 - 3 + 6a + 2a = 0\]
\[ \Rightarrow 8a = - 24\]
\[ \Rightarrow a = - 3\]
\[\text { Substituting a } = - 3 \text { in } \left( i \right), \text { we get }\]
\[3 - 2\left( - 3 \right) + b = 0\]
\[ \Rightarrow 3 + 6 + b = 0\]
\[ \Rightarrow b = - 9\]
\[\text { And }, c \in R\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the maximum value of f(x) = x1/x.
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Which of the following graph represents the extreme value:-