Advertisements
Advertisements
प्रश्न
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
उत्तर
\[\text { Given }: f\left( x \right) = x + \frac{a^2}{x}\]
\[ \Rightarrow f'\left( x \right) = 1 - \frac{a^2}{x^2}\]
\[\text { For the local maxima or minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 1 - \frac{a^2}{x^2} = 0\]
\[ \Rightarrow x^2 = a^2 \]
\[ \Rightarrow x = \pm a \]
\[\text { Thus, x = a and x = - a are the possible points of local maxima or local minima }. \]
\[\text { Now,} \]
\[ f''\left( x \right) = \frac{a^2}{x^3}\]
\[\text { At x = a }: \]
\[ f''\left( a \right) = \frac{a^2}{\left( a \right)^3} = \frac{1}{a} > 0\]
\[\text { So, x = a is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( a \right) = x + \frac{a^2}{x} = a + a = 2a\]
\[At x = - a: \]
\[ f''\left( a \right) = \frac{a^2}{\left( - a \right)^3} = - \frac{1}{a} < 0\]
\[\text { So, x = - a is the point of local maximum }. \]
\[\text { The local maximum value is given by }\]
\[f\left( - a \right) = x + \frac{a^2}{x} = - a - a = - 2a\]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = (x \[-\] 1) (x \[-\] 2)2.
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the point where f(x) = x log, x attains minimum value.
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x+y=8, then the maximum value of xy is ____________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .
Which of the following graph represents the extreme value:-