हिंदी

The Total Cost of Producing X Radio Sets per Day is Rs ( X 2 4 + 35 X + 25 ) and the Price per Set at Which They May Be Sold is Rs. ( 50 − X 2 ) . Ind the - Mathematics

Advertisements
Advertisements

प्रश्न

The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.

योग

उत्तर

\[\text { Profit =S.P. - C.P}.\]

\[ \Rightarrow P = x\left( 50 - \frac{x}{2} \right) - \left( \frac{x^2}{4} + 35x + 25 \right)\]

\[ \Rightarrow P = 50x - \frac{x^2}{2} - \frac{x^2}{4} - 35x - 25\]

\[ \Rightarrow \frac{dP}{dx} = 50 - x - \frac{x}{2} - 35\]

\[\text { For maximum or minimum values of P, we must have }\]

\[\frac{dP}{dx} = 0\]

\[ \Rightarrow 15 - \frac{3x}{2} = 0\]

\[ \Rightarrow 15 = \frac{3x}{2}\]

\[ \Rightarrow x = \frac{30}{3}\]

\[ \Rightarrow x = 10\]

\[\text { Now,} \]

\[\frac{d^2 P}{d x^2} = \frac{- 3}{2} < 0\]

\[\text{ So, profit is maximum if daily output is 10 items.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 36 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = x1/x.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×