हिंदी

The Function F(X) = 5 ∑ R = 1 (X − R)2 Assumes Minimum Value at X = (A) 5 (B) 5 2 (C) 3 (D) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .

विकल्प

  • 5

  • `5/2`

  • 3

  • 2

MCQ

उत्तर

3

 

\[\text { Given:} f\left( x \right) = \sum^5_{r = 1} \left( x - r \right)^2 \]

\[ \Rightarrow f\left( x \right) = \left( x - 1 \right)^2 + \left( x - 2 \right)^2 + \left( x - 3 \right)^2 + \left( x - 4 \right)^2 + \left( x - 5 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = 2\left( x - 1 + x - 2 + x - 3 + x - 4 + x - 5 \right)\]

\[ \Rightarrow f'\left( x \right) = 2\left( 5x - 15 \right)\]

\[\text { For a local maxima and a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 2\left( 5x - 15 \right) = 0\]

\[ \Rightarrow 5x - 15 = 0\]

\[ \Rightarrow 5x = 15\]

\[ \Rightarrow x = 3\]

\[\text { Now,} \]

\[f''\left( x \right) = 10\]

\[f''\left( x \right) = 10 > 0\]

\[\text { So, x = 3 is a local minima }. \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 10 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = x\[-\] 3x .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


`f(x)=xsqrt(1-x),  x<=1` .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write sufficient conditions for a point x = c to be a point of local maximum.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×