हिंदी

If(X) = 1 4 X 2 + 2 X + 1 Then Its Maximum Value is (A) 4 3 (B) 2 3 (C) 1 (D) 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .

विकल्प

  • \[\frac{4}{3}\]

  • \[\frac{2}{3}\]

  • 1

  • \[\frac{3}{4}\]

MCQ

उत्तर

\[\frac{4}{3}\]

 

\[\text { Maximum value of }\frac{1}{4 x^2 + 2x + 1}= \text { Minimum value of }4 x^2 + 2x + 1 \]

\[\text{ Now, }\]

\[f\left( x \right) = 4 x^2 + 2x + 1\]

\[ \Rightarrow f'\left( x \right) = 8x + 2\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 8x + 2 = 0\]

\[ \Rightarrow 8x = - 2\]

\[ \Rightarrow x = \frac{- 1}{4}\]

\[\text { Now, } \]

\[f''\left( x \right) = 8\]

\[ \Rightarrow f''\left( 1 \right) = 8 > 0\]

\[\text { So, x } = \frac{- 1}{4} \text { is a local minima } . \]

\[\text { Thus },\frac{1}{4 x^2 + 2x + 1}\text { is maximum at x } = \frac{- 1}{4} . \]

\[ \Rightarrow \text { Maximum value of } \frac{1}{4 x^2 + 2x + 1} = \frac{1}{4 \left( \frac{- 1}{4} \right)^2 + 2\left( \frac{- 1}{4} \right) + 1}\]

\[ = \frac{1}{\frac{4}{16} - \frac{1}{2} + 1} = \frac{16}{12} = \frac{4}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 22 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=sin 2x+5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = x3  (x \[-\] 1).


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = (x - 1) (x + 2)2.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


`f(x)=xsqrt(1-x),  x<=1` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×