हिंदी

F(X) = 1+2 Sin X+3 Cos2x, 0 ≤ X ≤ 2 π 3 is - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .

विकल्प

  • Minimum at x =\[\frac{\pi}{2}\]

  • Maximum at x = sin \[- 1\] ( \[\frac{1}{\sqrt{3}}\])

  • Minimum at x = \[\frac{\pi}{6}\]

  • Maximum at `sin^-1(1/6)`

MCQ

उत्तर

\[\text { Minimum at } x = \frac{\pi}{2}\]

 

\[\text { Given }: f\left( x \right) = 1 + 2 \sin x + 3 \cos^2 x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos x - 6 \cos x \sin x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos x\left( 1 - 3 \sin x \right)\]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 2 \cos x\left( 1 - 3 \sin x \right) = 0\]

\[ \Rightarrow 2 \cos x = 0 or \left( 1 - 3 \sin x \right) = 0\]

\[ \Rightarrow \cos x = 0 \ or \sin x = \frac{1}{3}\]

\[ \Rightarrow x = \frac{\pi}{2} or x = \sin^{- 1} \left( \frac{1}{3} \right)\]

\[\text { Now,} \]

\[f''\left( x \right) = - 2 \sin x - 6 \cos 2x\]

\[ \Rightarrow f''\left( \frac{\pi}{2} \right) = - 2 \sin \frac{\pi}{2} - 6 \cos \left( 2 \times \frac{\pi}{2} \right) = - 2 + 6 = 4 > 0\]

\[\text { So, x } = \frac{\pi}{2} \text { is a local minima }.\]

\[\text { Also }, \]

\[f''\left( \sin^{- 1} \left( \frac{1}{3} \right) \right) = - 2 \sin \left( \sin^{- 1} \left( \frac{1}{3} \right) \right) - 6 \cos \left( \sin^{- 1} \left( \frac{1}{3} \right) \right) = \frac{- 2}{3} - 6 \times \frac{2\sqrt{2}}{3} = - \left( \frac{2}{3} + 4\sqrt{2} \right) < 0\]

\[\text { So,} x = \sin^{- 1} \left( \frac{1}{3} \right)\text {  is a local maxima }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 24 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = | sin 4x+3 | on R ?


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) = x3\[-\] 6x2 + 9x + 15

 


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The minimum value of x loge x is equal to ____________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×