Advertisements
Advertisements
प्रश्न
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
उत्तर
\[\text { Given }: f\left( x \right) = x\sqrt{2 - x^2}\]
\[ \Rightarrow f'\left( x \right) = \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}} = 0\]
\[ \Rightarrow \sqrt{2 - x^2} = \frac{x}{\sqrt{2 - x^2}}\]
\[ \Rightarrow 2 - x^2 = x^2 \]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1 \]
\[\text { Thus, x = 1 and x = - 1 are the possible points of local maxima or local minima }. \]
\[\text { Now }, \]
\[f''\left( x \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\sqrt{2 - x^2} + \frac{x^3}{\sqrt{2 - x^2}}}{2 - x^2} \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\left( 2 - x^2 \right) + x^3}{\left( 2 - x^2 \right)\sqrt{2 - x^2}} \right)\]
\[\text { At }x = 1: \]
\[ f''\left( 1 \right) = \frac{- 1}{\sqrt{2 - 1^2}} - \left[ \frac{2\left( 2 - 1^2 \right) + 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]
\[\text { So, x = 1 is the point of local maximum }. \]
\[\text { The local maximum value is given by }\]
\[f\left( 4 \right) = 1\sqrt{2 - 1^2} = 1\]
\[\text { At }x = - 1: \]
\[ f''\left( - 1 \right) = \frac{1}{\sqrt{2 - 1^2}} + \left[ \frac{2\left( 2 - 1^2 \right) - 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = 1 + 1 = 2 > 0\]
\[\text { So, x = - 1 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( - 1 \right) = - 1\sqrt{2 - 1^2} = - 1\]
APPEARS IN
संबंधित प्रश्न
f(x)=| x+2 | on R .
f(x)=2x3 +5 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
`f(x) = x/2+2/x, x>0 `.
`f(x)=xsqrt(1-x), x<=1` .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The maximum value of x1/x, x > 0 is __________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of x loge x is equal to ____________ .