Advertisements
Advertisements
प्रश्न
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
विकल्प
-2
-1
2
4
उत्तर
2
\[\text { Given }: f\left( x \right) = 2 x^3 - 3 x^2 - 12x + 5\]
\[ \Rightarrow f'\left( x \right) = 6 x^2 - 6x - 12\]
\[\text { For a local maxima or a local minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 6 x^2 - 6x - 12 = 0\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x = 2, - 1\]
\[\text{ Now, } \]
\[f''\left( x \right) = 12x - 6\]
\[ \Rightarrow f''\left( - 1 \right) = - 12 - 6 = - 18 < 0\]
\[\text { So, x = 1 is a local maxima } . \]
\[\text { Also }, \]
\[f''\left( 2 \right) = 24 - 6 = 18 > 0\]
\[\text { So, x = 2 is a local minima } . \]
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
f(x) = xex.
`f(x) = x/2+2/x, x>0 `.
`f(x)=xsqrt(1-x), x<=1` .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
For the function f(x) = \[x + \frac{1}{x}\]
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The minimum value of x loge x is equal to ____________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .