हिंदी

The Function Y = a Log X+Bx2 + X Has Extreme Values at X=1 and X=2. Find a and B ? - Mathematics

Advertisements
Advertisements

प्रश्न

The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?

योग

उत्तर

\[\text { Given }: f\left( x \right) = y = a \log x + b x^2 + x\]

\[ \Rightarrow f'\left( x \right) = \frac{a}{x} + 2bx + 1\]

\[\text { Since }, f'\left( x \right) \text { has extreme values at x = 1 and x = 2,} f'\left( 1 \right) = 0 . \]

\[ \Rightarrow \frac{a}{1} + 2b\left( 1 \right) + 1 = 0\]

\[ \Rightarrow a = - 1 - 2b . . . \left( 1 \right)\]

\[f'\left( 2 \right) = 0\]

\[ \Rightarrow \frac{a}{2} + 2b\left( 2 \right) + 1 = 0\]

\[ \Rightarrow a + 8b = - 2 \]

\[ \Rightarrow a = - 2 - 8b . . . \left( 2 \right)\]

\[\text { From eqs } . \left( 1 \right) \text { and } \left( 2 \right), \text { we get }\]

\[ - 2 - 8b = - 1 - 2b\]

\[ \Rightarrow 6b = - 1\]

\[ \Rightarrow b = \frac{- 1}{6}\]

\[\text { Substituting b } = \frac{- 1}{6} \text { in eq } . \left( 1 \right), \text{we get }\]

\[a = - 1 + \frac{1}{3} = \frac{- 2}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 3 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x3  (x \[-\] 1).


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


`f(x) = x/2+2/x, x>0 `.


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The number which exceeds its square by the greatest possible quantity is _________________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×