Advertisements
Advertisements
प्रश्न
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
विकल्प
\[1, 2\sqrt{2}\]
(1, 2)
(1, -2)
( -2,1)
उत्तर
\[\left( 1, 2 \right)\]
\[\text { Let the required point be } \left( x, y \right) . \text { Then }, \]
\[ y^2 = 4x\]
\[ \Rightarrow x = \frac{y^2}{4} ............. \left( 1 \right)\]
\[\text { Now,} \]
\[d = \sqrt{\left( x - 2 \right)^2 + \left( y - 1 \right)^2}\]
\[\text { Squaring both sides, we get }\]
\[ \Rightarrow d^2 = \left( x - 2 \right)^2 + \left( y - 1 \right)^2 \]
\[ \Rightarrow d^2 = \left( \frac{y^2}{4} - 2 \right)^2 + \left( y - 1 \right)^2 \]
\[ \Rightarrow d^2 = \frac{y^4}{16} + 4 - y^2 + y^2 + 1 - 2y ..............\left[ \text{From eq. }\left( 1 \right) \right]\]
\[\text { Now }, \]
\[Z = d^2 = \frac{y^4}{16} + 4 - y^2 + y^2 + 1 - 2y\]
\[ \Rightarrow \frac{dZ}{dy} = \frac{y^3}{4} - 2y + 2y - 2\]
\[ \Rightarrow \frac{dZ}{dy} = \frac{y^3}{4} - 2\]
\[ \Rightarrow \frac{y^3}{4} - 2 = 0\]
\[ \Rightarrow y^3 = 8\]
\[ \Rightarrow y = 2\]
\[\text { Substituting the value of y in }\left( 1 \right),\text { we get }\]
\[x = 1\]
\[\text { Now,} \]
\[\frac{d^2 Z}{d y^2} = \frac{3 y^2}{4}\]
\[ \Rightarrow \frac{d^2 Z}{d y^2} = \frac{3 \left( 2 \right)^2}{4} = 3 > 0\]
\[\text { So, the nearest point is } \left( 1, 2 \right) . \]
APPEARS IN
संबंधित प्रश्न
f(x)=| x+2 | on R .
f(x) = x3 \[-\] 1 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = xex.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.