Advertisements
Advertisements
प्रश्न
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
उत्तर
\[\text { We have }, \]
\[f\left( x \right) = ax + \frac{b}{x}\]
\[ \Rightarrow f'\left( x \right) = a - \frac{b}{x^2}\]
\[\text { For a local maxima or a local minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow a - \frac{b}{x^2} = 0\]
\[ \Rightarrow x^2 = \frac{b}{a}\]
\[ \Rightarrow x = \sqrt{\frac{b}{a}}, - \sqrt{\frac{b}{a}}\]
\[\text { But, }x > 0 \]
\[ \Rightarrow x = \sqrt{\frac{b}{a}}\]
\[\text { Now }, \]
\[f''\left( x \right) = \frac{2b}{x^3}\]
\[\text { At }x = \sqrt{\frac{b}{a}} \]
\[f''\left( \sqrt{\frac{b}{a}} \right) = \frac{2b}{\left( \sqrt{\frac{b}{a}} \right)^3} = \frac{2 a^\frac{3}{2}}{b^\frac{1}{2}} > 0 .....................\left[ \because a > 0 \text{ and }b > 0 \right]\]
\[\text { So }, x = \sqrt{\frac{b}{a}} \text { is a point of local minimum }. \]
\[\text { Hence, the least value is }\]
\[f\left( \sqrt{\frac{b}{a}} \right) = a\sqrt{\frac{b}{a}} + \frac{b}{\sqrt{\frac{b}{a}}} = \sqrt{ab} + \sqrt{ab} = 2\sqrt{ab}\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f(x) = (x \[-\] 5)4.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x) = 2/x - 2/x^2, x>0`
f(x) = xex.
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = x1/x.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of x loge x is equal to ____________ .