Advertisements
Advertisements
प्रश्न
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
उत्तर
\[\text{ Let the height and radius of the base of the cylinder be h and r, respectively . Then }, \]
\[\frac{h^2}{4} + r^2 = R^2 \]
\[ \Rightarrow h = 2\sqrt{R^2 - r^2} ............. \left( 1 \right)\]
\[\text { Volume of cylinder }, V = \pi r^2 h\]
\[\text { Squaring both sides, we get }\]
\[ \Rightarrow V^2 = \pi^2 r^4 h^2 \]
\[ \Rightarrow V^2 = 4 \pi^2 r^4 \left( R^2 - r^2 \right) ..............\left[ \text { From eq. } \left( 1 \right) \right]\]
\[\text { Now,} \]
\[Z = 4 \pi^2 \left( r^4 R^2 - r^6 \right)\]
\[ \Rightarrow \frac{dZ}{dr} = 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right)\]
\[\text { For maximum or minimum values of Z, we must have} \]
\[\frac{dZ}{dr} = 0\]
\[ \Rightarrow 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right) = 0\]
\[ \Rightarrow 4 r^3 R^2 = 6 r^5 \]
\[ \Rightarrow 6 r^2 = 4 R^2 \]
\[ \Rightarrow r^2 = \frac{4 R^2}{6}\]
\[ \Rightarrow r = \frac{2R}{\sqrt{6}}\]
\[\text { Substituting the value of r in eq. }\left( 1 \right), \text { we get }\]
\[ \Rightarrow h = 2\sqrt{R^2 - \left( \frac{2R}{\sqrt{6}} \right)^2}\]
\[ \Rightarrow h = 2\sqrt{\frac{6 R^2 - 4 R^2}{6}}\]
\[ \Rightarrow h = 2\sqrt{\frac{R^2}{3}}\]
\[ \Rightarrow h = \frac{2R}{\sqrt{3}}\]
\[\text { Now,} \]
\[ \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 r^2 R^2 - 30 r^4 \right)\]
\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 \left( \frac{2R}{\sqrt{6}} \right)^2 R^2 - 30 \left( \frac{2R}{\sqrt{6}} \right)^4 \right)\]
\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 8 R^4 - \frac{80 R^4}{6} \right)\]
\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( \frac{48 R^4 - 80 R^4}{6} \right)\]
\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( - \frac{16 R^4}{3} \right) < 0\]
\[\text { So, volume of the cylinder is maximum when } h = \frac{2R}{\sqrt{3}} . \]
\[\text { Hence proved }.\]
APPEARS IN
संबंधित प्रश्न
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = sin 2x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = xex.
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the point where f(x) = x log, x attains minimum value.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-