हिंदी

A Large Window Has the Shape of a Rectangle Surmounted by an Equilateral Triangle. If the Perimeter of the Window is 12 Metres Find the Dimensions of the Rectangle Will - Mathematics

Advertisements
Advertisements

प्रश्न

A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.

योग

उत्तर

\[\text { Let the dimensions of the rectangle be x and y } . \]

\[\text { Perimeter of the window = x + y + x + x + y = 12 }\]

\[ \Rightarrow 3x + 2y = 12\]

\[ \Rightarrow y = \frac{12 - 3x}{2} ...........\left( 1 \right)\]

\[\text { Area of the window } =xy+\frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow A = x\left( \frac{12 - 3x}{2} \right) + \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow A = 6x - \frac{3 x^2}{2} + \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow \frac{dA}{dx} = 6 - \frac{6x}{2} + \frac{2\sqrt{3}}{4}x\]

\[ \Rightarrow \frac{dA}{dx} = 6 - 3x + \frac{\sqrt{3}}{2}x\]

\[ \Rightarrow \frac{dA}{dx} = 6 - x\left( 3 - \frac{\sqrt{3}}{2} \right)\]

\[\text { For maximum or a minimum values of A, we must have }\]

\[\frac{dA}{dx} = 0\]

\[ \Rightarrow 6 = x\left( 3 - \frac{\sqrt{3}}{2} \right)\]

\[ \Rightarrow x = \frac{12}{6 - \sqrt{3}}\]

\[\text { Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]

\[y = \frac{12 - 3\left( \frac{12}{6 - \sqrt{3}} \right)}{2}\]

\[ \Rightarrow y = \frac{18 - 6\sqrt{3}}{6 - \sqrt{3}}\]

\[\text { Now, }\]

\[\frac{d^2 A}{d x^2} = - 3 + \frac{\sqrt{3}}{2} < 0\]

\[\text { Thus, the area is maximum when  }x=\frac{12}{6 - \sqrt{3}}\text { and }y=\frac{18 - 6\sqrt{3}}{6 - \sqrt{3}}.\]

shaalaa.com

Notes

The solution given in the book is incorrect. The solution here is created according to the question given in the book.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 16 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×