हिंदी

F(X) = (X − 1) (X+2)2. - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) =  (x \[-\] 1) (x+2)2

योग

उत्तर

\[\text { Given }: f\left( x \right) = \left( x - 1 \right) \left( x + 2 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right)\]

\[\text{ For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( x + 2 + 2x - 2 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( 3x \right) = 0\]

\[ \Rightarrow x = 0, - 2\]

Since  f '(x) changes from negative to positive when x increases through 0, x = 0 is the point of local minima.

The local minimum value of  f (x) at x = 0 is given by \[\left( 0 - 1 \right) \left( 0 + 2 \right)^2 = - 4\] 

Since  f '(x) changes sign from positive to negative when x increases through \[- 2\] ,x = \[- 2\] is the point of local maxima.
The local maximum value of  f (x)  at x = \[- 2\] is given by

\[\left( - 2 - 1 \right) \left( - 2 + 2 \right)^2 = 0\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.2 | Q 4 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = x/2+2/x, x>0 `.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


If x+y=8, then the maximum value of xy is ____________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×