हिंदी

F(X) = (X − 2) √ X − 1 in [ 1 , 9 ] . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .

योग

उत्तर

\[\text { Given }: f\left( x \right) = \left( x - 2 \right)\sqrt{x - 1}\]

\[ \Rightarrow f'\left( x \right) = \sqrt{x - 1} + \frac{\left( x - 2 \right)}{2\sqrt{x - 1}}\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \sqrt{x - 1} + \frac{\left( x - 2 \right)}{2\sqrt{x - 1}} = 0\]

\[ \Rightarrow 2\left( x - 1 \right) + \left( x - 2 \right) = 0\]

\[ \Rightarrow 2x - 2 + x - 2 = 0\]

\[ \Rightarrow 3x - 4 = 0\]

\[ \Rightarrow 3x = 4 \]

\[ \Rightarrow x = \frac{4}{3} \]

\[\text { Thus, the critical points of f are } 1, \frac{4}{3} \text { and } 9 . \]

\[\text { Now }, \]

\[ f\left( 1 \right) = \left( 1 - 2 \right)\sqrt{1 - 1} = 0\]

\[ f\left( \frac{4}{3} \right) = \left( \frac{4}{3} - 2 \right)\sqrt{\frac{4}{3} - 1} = \frac{- 2}{3} \times \frac{1}{\sqrt{3}} = - \frac{2}{3\sqrt{3}}\]

\[ f\left( 9 \right) = \left( 9 - 2 \right)\sqrt{9 - 1} = 14\sqrt{2}\]

\[\text { Hence, the absolute maximum value when x } = 9 \text{ is }14\sqrt{2}\text { and the absolute minimum value when x } = \frac{4}{3} \text{ is }- \frac{2}{3\sqrt{3}} . \]

shaalaa.com

Notes

The solution given in the book is incorrect . The solution here is created according to the question given in the book

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.4 | Q 1.4 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


f(x) = x3  (x \[-\] 1).


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the minimum value of f(x) = xx .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×