Advertisements
Advertisements
प्रश्न
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
उत्तर
\[\text { Given }: f\left( x \right) = 4x - \frac{x^2}{2}\]
\[ \Rightarrow f'\left( x \right) = 4 - x\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 4 - x = 0\]
\[ \Rightarrow x = 4\]
\[\text { Thus, the critical points of f are - 2, 4 and 4 . 5 } . \]
\[\text { Now }, \]
\[f\left( - 2 \right) = 4\left( - 2 \right) - \frac{\left( - 2 \right)^2}{2} = - 8 - 2 = - 10\]
\[f\left( 4 \right) = 4\left( 4 \right) - \frac{\left( 4 \right)^2}{2} = 16 - 8 = 8\]
\[f\left( 4 . 5 \right) = 4\left( 4 . 5 \right) - \frac{\left( 4 . 5 \right)^2}{2} = 18 - 10 . 125 = 7 . 875\]
\[\text { Hence, the absolute maximum value when x = 4 is 8 and the absolute minimum value when } x = - 2 \text{ is } - 10 . \]
APPEARS IN
संबंधित प्रश्न
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
For the function f(x) = \[x + \frac{1}{x}\]
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .