Advertisements
Advertisements
प्रश्न
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
उत्तर
\[\text { Given }: \hspace{0.167em} f\left( x \right) = \left( x - 1 \right)^2 + 3\]
\[ \Rightarrow f'\left( x \right) = 2\left( x - 1 \right)\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow 2\left( x - 1 \right) = 0\]
\[ \Rightarrow x = 1\]
\[\text { Thus, the critical points of f are - 3 and }1 . \]
\[\text { Now, }\]
\[f\left( - 3 \right) = \left( - 3 - 1 \right)^2 + 3 = 16 + 3 = 19\]
\[f\left( 1 \right) = \left( 1 - 1 \right)^2 + 3 = 3\]
\[\text { Hence, the absolute maximum value when x = - 3 is 19 and the absolute minimum value when x = 1 is }3 . \]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x) = x3 (x \[-\] 1)2 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
`f(x)=xsqrt(1-x), x<=1` .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The number which exceeds its square by the greatest possible quantity is _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .