Advertisements
Advertisements
प्रश्न
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
उत्तर
Let the side of the square to be cut off be x cm.
Then, the length and the breadth of the box will be (18 − 2x) cm each and height of the box will be x cm.
Volume of the box, V(x) = x(18 − 2x)2
\[V'\left( x \right) = \left( 18 - 2x \right)^2 - 4x\left( 18 - 2x \right)\]
\[ = \left( 18 - 2x \right)\left( 18 - 2x - 4x \right)\]
\[ = \left( 18 - 2x \right)\left( 18 - 6x \right)\]
\[ = 12\left( 9 - x \right)\left( 3 - x \right)\]
\[V''\left( x \right) = 12\left( - \left( 9 - x \right) - \left( 3 - x \right) \right)\]
\[ = - 12\left( 9 - x + 3 - x \right)\]
\[ = - 24\left( 6 - x \right)\]
\[\text { For maximum and minimum values of V, we must have }\]
\[ V'\left( x \right) = 0\]
\[\Rightarrow\] x = 9 or x = 3
If x = 9, then length and breadth will become 0.
∴ x ≠ 9
\[\Rightarrow\] x = 3
Now,
\[V''\left( 3 \right) = - 24\left( 6 - 3 \right) = - 72 < 0\]
∴ x = 3 is the point of maxima.
\[V\left( x \right) = 3 \left( 18 - 6 \right)^2 = 3 \times 144 = 432 {cm}^3\]
Hence, if we remove a square of side 3 cm from each corner of the square tin and make a box from the remaining sheet, then the volume of the box so obtained would be the largest, i.e. 432 cm3
APPEARS IN
संबंधित प्रश्न
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 3x .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the minimum value of f(x) = xx .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .
Which of the following graph represents the extreme value:-