हिंदी

A Rectangular Sheet of Tin 45 Cm by 24 Cm is to Be Made into a Box Without Top, in Cutting off Squares from Each Corners and Folding up the Flaps. ? - Mathematics

Advertisements
Advertisements

प्रश्न

A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?

योग

उत्तर

\[\text { Suppose square of side measuring x cm is cut off } . \]

\[\text { Then, the length, breadth and height of the box will be } \left( 45 - x \right), \left( 24 - 2x \right) \text { and } x, respectively . \]

\[ \Rightarrow \text { Volume of the box, V } = \left( 45 - 2x \right)\left( 24 - 2x \right)x\]

\[ \Rightarrow \frac{dV}{dx} = \left( 45 - 2x \right)\left( 24 - 2x \right) - 2x\left( 45 - 2x \right) - 2x\left( 24 - 2x \right)\]

\[\text { For maximum or minimum values of V, we must have }\]

\[\frac{dV}{dx} = 0\]

\[ \Rightarrow \left( 45 - 2x \right)\left( 24 - 2x \right) - 2x\left( 45 - 2x \right) - 2x\left( 24 - 2x \right) = 0\]

\[ \Rightarrow 4 x^2 + 1080 - 138x - 48x + 4 x^2 + 4 x^2 - 90x = 0\]

\[ \Rightarrow 12 x^2 - 276x + 1080 = 0\]

\[ \Rightarrow x^2 - 23x + 90 = 0\]

\[ \Rightarrow x^2 - 18x - 5x + 90 = 0\]

\[ \Rightarrow x\left( x - 18 \right) - 5\left( x - 18 \right) = 0\]

\[ \Rightarrow x - 18 = 0 \text{ or }x - 5 = 0\]

\[ \Rightarrow x = 18 \text{ or }x = 5\]

\[\text { Now,} \]

\[\frac{d^2 V}{d x^2} = 24x - 276\]

\[ \frac{d^2 V}{d x^2}_{x = 5} = 120 - 276 = - 156 < 0 \]

\[ \frac{d^2 V}{d x^2}_{x = 18} = 432 - 276 = 156 > 0\]

\[\text { Thus, volume of the box is maximum when x } = 5 cm . \]

\[\text { Hence, the side of the square to be cut off measures } 5 cm .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 13 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f(x)=2x3 +5 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x) = x/2+2/x, x>0 `.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the maximum value of f(x) = x1/x.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The maximum value of x1/x, x > 0 is __________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×