हिंदी

F ( X ) = X √ 32 − X 2 , − 5 ≤ X ≤ 5 - Mathematics

Advertisements
Advertisements

प्रश्न

`f(x)=xsqrt(32-x^2),  -5<=x<=5` .

योग

उत्तर

\[\text { Given }: f\left( x \right) = x\sqrt{32 - x^2}\]

\[ \Rightarrow f'\left( x \right) = \sqrt{32 - x^2} - \frac{x^2}{\sqrt{32 - x^2}}\]

\[\text {For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \sqrt{32 - x^2} - \frac{x^2}{\sqrt{32 - x^2}} = 0\]

\[ \Rightarrow \sqrt{32 - x^2} = \frac{x}{\sqrt{32 - x^2}}\]

\[ \Rightarrow 32 - x^2 = x^2 \]

\[ \Rightarrow x^2 = 16\]

\[ \Rightarrow x = \pm 4 \]

\[\text { Thus, x = 4 and x = - 4 are the possible points of local maxima or local minima  }. \]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{- x}{\sqrt{32 - x^2}} - \left( \frac{2x\sqrt{32 - x^2} + \frac{x^3}{\sqrt{32 - x^2}}}{32 - x^2} \right) = \frac{- x}{\sqrt{32 - x^2}} - \left( \frac{2x\left( 32 - x^2 \right) + x^3}{\left( 32 - x^2 \right)\sqrt{32 - x^2}} \right)\]

\[\text { At }x = 4: \]

\[ f''\left( 4 \right) = \frac{- 4}{\sqrt{32 - 4^2}} - \left[ \frac{8\left( 32 - 4^2 \right) + 4^3}{\left( 32 - 4^2 \right)\sqrt{32 - 4^2}} \right] = - 1 - \frac{192}{64} = - 3 < 0\]

\[\text { So, x = 4 is the point of local maximum } . \]

\[\text { The local maximum value is given by} \]

\[f\left( 4 \right) = 4\sqrt{32 - 4^2} = 16\]

\[\text { At } x = - 4: \]

\[ f''\left( - 4 \right) = \frac{4}{\sqrt{32 - 4^2}} + \left[ \frac{8\left( 32 - 4^2 \right) - 4^3}{\left( 32 - 4^2 \right)\sqrt{32 - 4^2}} \right] = 1 + 2 = 3 > 0\]

\[\text { So, x = - 4 is the point of local minimum } . \]

\[\text { The local minimum value is given by } \]

\[f\left( - 4 \right) = - 4\sqrt{32 - 4^2} = - 16\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 1.08 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=2x3 +5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Find the maximum and minimum values of y = tan \[x - 2x\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×