हिंदी

F(X) = X 3 − 2 a X 2 + a 2 X , a > 0 , X ∈ R - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .

योग

उत्तर

\[ f\left( x \right) = x^3 - 2a x^2 + a^2 x\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 - 4ax + a^2 \]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 - 4ax + a^2 = 0\]

\[ \Rightarrow 3 x^2 - 3ax - ax + a^2 = 0\]

\[ \Rightarrow 3x\left( x - a \right) - a\left( x - a \right) = 0\]

\[ \Rightarrow \left( 3x - a \right)\left( x - a \right) = 0\]

\[ \Rightarrow x = a \text { and } \frac{a}{3}\]

\[\text {  Thus, x = a and x } = \frac{a}{3}\text {  are the possible points of local maxima or local minima }. \]

\[\text { Now,} \]

\[f''\left( x \right) = 6x - 4a\]

\[\text { At } x = a: \]

\[f''\left( a \right) = 6\left( a \right) - 4a = 2a > 0\]

\[\text { So, x = a is the point of local minimum }. \]

\[\text { The local minimum value is given by }\]

\[f\left( a \right) = a^3 - 2a \left( a \right)^2 + a^2 \left( a \right) = 0\]

\[\text { At }x = \frac{a}{3}: \]

\[ f''\left( \frac{a}{3} \right) = 6\left( \frac{a}{3} \right) - 4a = - 2a < 0\]

\[\text { So }, x = \frac{a}{3} \text { is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{a}{3} \right) = \left( \frac{a}{3} \right)^3 - 2a \left( \frac{a}{3} \right)^2 + a^2 \left( \frac{a}{3} \right) = \frac{a^3}{27} - \frac{2 a^3}{9} + \frac{a^3}{3} = \frac{4 a^3}{27}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 1.09 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The maximum value of x1/x, x > 0 is __________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×