हिंदी

Write Sufficient Conditions for a Point X=C to Be a Point of Local Maximum. - Mathematics

Advertisements
Advertisements

प्रश्न

Write sufficient conditions for a point x = c to be a point of local maximum.

टिप्पणी लिखिए
योग

उत्तर

We know that at the extreme points of a function f(x), the first order derivative of the function is equal to zero, i.e.
`f '(x) = 0 " at "x = c`

`⇒ f '(c) = 0`
Also, at the point of local maximum, the second order derivative of the function at the given point must be less than zero, i.e.
`f''(c) < 0`
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.6 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.6 | Q 2 | पृष्ठ ८०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x3  (x \[-\] 1).


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = xx .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×