Advertisements
Advertisements
प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
उत्तर
To prove: the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6√3 r
Let ABC is an isosceles triangle with AB = AC = x and BC = y
and a circle with center O and radius r is inscribed in triangle ABC
Since, O is incenter of the triangle. It divides the medians into 2:1
⇒ AO = 2r and OF = r
Using Pythagoras theorem in ∆ ABF:
\[{AF}^2 + {BF}^2 = {AB}^2\]
\[\Rightarrow {(3r)}^2 + {(\frac{y}{2})}^2 = x^2 . . . . . (1)\]
\[\text { Again, From }\Delta ADO, {(2r)}^2 = r^2 + {AD}^2\]
\[\Rightarrow 3 r^2 = {AD}^2 \]
\[\Rightarrow AD=\sqrt{3}r \]
\[\text { Now, BD=BF and EC=FC(Since tangents drawn from an external point are equal })\]
\[\text { Now, AD+DB=x}\]
\[\Rightarrow (\sqrt{3}r) + (\frac{y}{2}) = x\]
\[\Rightarrow \frac{y}{2} = x -\sqrt{3} ............. (2)\]
\[\begin{array}{l}\therefore {(3r)}^2 + {(x - \sqrt{3}r)}^2 = x^2 \\ \Rightarrow 9 r^2 + x^2 - 2\sqrt{3}rx + 3 r^2 = x^2 \\ \Rightarrow 12 r^2 = 2\sqrt{3}rx \\ \Rightarrow 6r = \sqrt{3}x \\ \Rightarrow x = \frac{6r}{\sqrt{3}}\end{array}\]
\[\begin{array}{l}\text { Now, From }(2), \\ \frac{y}{2} = \frac{6}{\sqrt{3}}r - \sqrt{3}r \\ \Rightarrow \frac{y}{2} = \frac{6\sqrt{3}}{3}r - \sqrt{3}r \\ \Rightarrow \frac{y}{2} = \frac{(6\sqrt{3} - 3\sqrt{3})r}{3} \\ \Rightarrow \frac{y}{2} = \frac{3\sqrt{3}r}{3} \\ \Rightarrow y = 2\sqrt{3}r \\ \text { Perimeter } = 2x + y \\ = 2\left( \frac{6}{\sqrt{3}}r \right) + 2\sqrt{3}r \\ = \frac{12}{\sqrt{3}}r + 2\sqrt{3}r \\ = \frac{12r + 6r}{\sqrt{3}} \\ = \frac{18}{\sqrt{3}}r \\ = \frac{18 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}r \\ = 6\sqrt{3}r\end{array}\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = \[\frac{1}{x^2 + 2}\] .
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
For the function f(x) = \[x + \frac{1}{x}\]
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .