हिंदी

An Open Tank is to Be Constructed with a Square Base and Vertical Sides So as to Contain a Given Quantity of Water. Lead with Be Least, If Depth is Made Half - Mathematics

Advertisements
Advertisements

प्रश्न

An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.

योग

उत्तर

\[\text { Let l, h, V and S be the length, height, volume and surface area of the tank to be constructed }. \]

\[\text { Since volume, V is constant,} \]

\[ l^2 h = V\]

\[ \Rightarrow h = \frac{V}{l^2} ............\left( 1 \right)\]

\[\text { Surface area, S = } l^2 + 4lh\]

\[ \Rightarrow S = l^2 + \frac{4V}{l} .............\left[\text {From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dS}{dl} = 2l - \frac{4V}{l^2}\]

\[\text { For S to be maximum or minimum, we must have }\]

\[\frac{dS}{dl} = 0\]

\[ \Rightarrow 2l - \frac{4V}{l^2} = 0\]

\[ \Rightarrow 2 l^3 - 4V = 0\]

\[ \Rightarrow 2 l^3 = 4V\]

\[ \Rightarrow l^3 = 2V\]

\[\text { Now, }\]

\[\frac{d^2 S}{d l^2} = 2 + \frac{8V}{l^3}\]

\[ \Rightarrow \frac{d^2 S}{d l^2} = 2 + \frac{8V}{2V} = 6 > 0\]

\[\text { Here, surface area is minimum.} \]

\[h = \frac{V}{l^2}\]

\[\text { Substituting the value of V } = \frac{l^3}{2}\text {  in eq. } \left( 1 \right),\text { we get }\]

\[h = \frac{l^3}{2 l^2}\]

\[ \Rightarrow h = \frac{l}{2}\]

\[\text { Hence proved }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 38 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = x\[-\] 1 on R .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) = (x - 1) (x + 2)2.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×