हिंदी

Write the Maximum Value of F(X) = X1/X. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the maximum value of f(x) = x1/x.

योग

उत्तर

\[\text { Given }: \hspace{0.167em} f\left( x \right) = x^\frac{1}{x} \]

\[\text { Taking log on both sides, we get }\]

\[\log f\left( x \right) = \frac{1}{x}\log x\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{1}{f\left( x \right)}f'\left( x \right) = \frac{- 1}{x^2}\log x + \frac{1}{x^2}\]

\[ \Rightarrow f'\left( x \right) = f\left( x \right)\frac{1}{x^2}\left( 1 - \log x \right)\]

\[ \Rightarrow f'\left( x \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right) ...........\left( 1 \right)\]

\[ \Rightarrow f'\left( x \right) = x^\frac{1}{x} - 2 \left( 1 - \log x \right) \]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow x^\frac{1}{x} - 2 \left( 1 - \log x \right) = 0\]

\[ \Rightarrow \log x = 1\]

\[ \Rightarrow x = e\]

\[\text { Now }, \]

\[f''\left( x \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right)^2 + x^\frac{1}{x} \left( \frac{- 2}{x^3} + \frac{2}{x^3}\log x - \frac{1}{x^3} \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right)^2 + x^\frac{1}{x} \left( - \frac{3}{x^3} + \frac{2}{x^3}\log x \right)\]

\[\text { At }x = e\]

\[f''\left( e \right) = e^\frac{1}{e} \left( \frac{1}{e^2} - \frac{1}{e^2}\log e \right)^2 + e^\frac{1}{e} \left( - \frac{3}{e^3} + \frac{2}{e^3}\log e \right) = - e^\frac{1}{e} \left( \frac{1}{e^3} \right) < 0\]

\[\text { So, x = e is a point of local maximum }. \]

\[\text { Thus, the maximum value is given by }\]

\[f\left( e \right) = e^\frac{1}{e} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.6 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.6 | Q 9 | पृष्ठ ८०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = 2/x - 2/x^2,  x>0`


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×