हिंदी

Find the Absolute Maximum and Minimum Values of a Function F Given by F ( X ) = 12 X 4 / 3 − 6 X 1 / 3 , X ∈ [ − 1 , 1 ] . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 

योग

उत्तर

\[\text { Given}: f\left( x \right) = 12 x^\frac{4}{3} - 6 x^\frac{1}{3} \]

\[ \Rightarrow f'\left( x \right) = 16 x^\frac{1}{3} - 2 x^\frac{- 2}{3} = \frac{2\left( 8x - 1 \right)}{x^\frac{2}{3}}\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{2\left( 8x - 1 \right)}{x^\frac{2}{3}} = 0\]

\[ \Rightarrow 8x - 1 = 0\]

\[ \Rightarrow x = \frac{1}{8}\]

\[\text { Thus, the critical points of f are } - 1, \frac{1}{8} \text { and  }1 . \]

\[\text { Now }, \]

\[f\left( - 1 \right) = 12 \left( - 1 \right)^\frac{4}{3} - 6 \left( - 1 \right)^\frac{1}{3} = 18\]

\[f\left( \frac{1}{8} \right) = 12 \left( \frac{1}{8} \right)^\frac{4}{3} - 6 \left( \frac{1}{8} \right)^\frac{1}{3} = \frac{- 9}{4}\]

\[f\left( 1 \right) = 12 \left( 1 \right)^\frac{4}{3} - 6 \left( 1 \right)^\frac{1}{3} = 6\]

\[\text { Hence, the absolute maximum value when  x = - 1 is 18 and the absolute minimum value when } x = \frac{1}{8}\text{ is }\frac{- 9}{4} . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.4 | Q 4 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x) = (x \[-\] 5)4.


f(x) =  (x \[-\] 1) (x+2)2


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) = (x - 1) (x + 2)2.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×