हिंदी

F ( X ) = 3 X 4 − 8 X 3 + 12 X 2 − 48 X + 25 in [ 0 , 3] - Mathematics

Advertisements
Advertisements

प्रश्न

`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .

योग

उत्तर

\[\text { Given }: \hspace{0.167em} f\left( x \right) = 3 x^4 - 8 x^3 + 12 x^2 - 48x + 25\]

\[ \Rightarrow f'\left( x \right) = 12 x^3 - 24 x^2 + 24x - 48\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 12 x^3 - 24 x^2 + 24x - 48 = 0\]

\[ \Rightarrow x^3 - 2 x^2 + 2x - 4 = 0\]

\[ \Rightarrow x^2 \left( x - 2 \right) + 2\left( x - 2 \right) = 0\]

\[ \Rightarrow \left( x - 2 \right)\left( x^2 + 2 \right) = 0\]

\[ \Rightarrow x - 2 = 0 or \left( x^2 + 2 \right) = 0 \]

\[ \Rightarrow x = 2 \]

\[\text { No real root exists for } \left( x^2 + 2 \right) = 0 . \]

\[\text { Thus, the critical points of f are 0, 2 and 3 } . \]

\[\text { Now }, \]

\[f\left( 0 \right) = 3 \left( 0 \right)^4 - 8 \left( 0 \right)^3 + 12 \left( 0 \right)^2 - 48\left( 0 \right) + 25 = 25\]

\[f\left( 2 \right) = 3 \left( 2 \right)^4 - 8 \left( 2 \right)^3 + 12 \left( 2 \right)^2 - 48\left( 2 \right) + 25 = - 39\]

\[f\left( 3 \right) = 3 \left( 3 \right)^4 - 8 \left( 3 \right)^3 + 12 \left( 3 \right)^2 - 48\left( 3 \right) + 25 = 16\]

\[\text { Hence, the absolute maximum value when x = 0 is 25 and the absolute minimum value when x = 2 is - 39 } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.4 | Q 1.3 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×