हिंदी

A Beam is Supported at the Two End and is Uniformly Loaded. the Bending Moment M at a Distance X from One End is Given by M = W X 3 X − W 3 X 3 L 2 . Find the Point at Which M is Maximum in Case. - Mathematics

Advertisements
Advertisements

प्रश्न

A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.

योग

उत्तर

\[\text { Given }: \hspace{0.167em} M = \frac{Wx}{3} - \frac{W x^3}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - 3 \times \frac{W x^2}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - \frac{W x^2}{L^2}\]

\[\text { For maximum or minimum values of M, we must have }\]

\[\frac{dM}{dx} = 0\]

\[ \Rightarrow \frac{W}{3} - \frac{W x^2}{L^2} = 0\]

\[ \Rightarrow \frac{W}{3} = \frac{W x^2}{L^2}\]

\[ \Rightarrow x = \frac{L}{\sqrt{3}}\]

\[\text { Now }, \]

\[\frac{d^2 M}{d x^2} = - \frac{2Wx}{L^2} < 0\]

\[\text { So, M is maximum at } x = \frac{L}{\sqrt{3}} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 6.2 | पृष्ठ ७२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = | sin 4x+3 | on R ?


f(x)=2x3 +5 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = x1/x.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×