English

A Beam is Supported at the Two End and is Uniformly Loaded. the Bending Moment M at a Distance X from One End is Given by M = W X 3 X − W 3 X 3 L 2 . Find the Point at Which M is Maximum in Case. - Mathematics

Advertisements
Advertisements

Question

A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.

Sum

Solution

\[\text { Given }: \hspace{0.167em} M = \frac{Wx}{3} - \frac{W x^3}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - 3 \times \frac{W x^2}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - \frac{W x^2}{L^2}\]

\[\text { For maximum or minimum values of M, we must have }\]

\[\frac{dM}{dx} = 0\]

\[ \Rightarrow \frac{W}{3} - \frac{W x^2}{L^2} = 0\]

\[ \Rightarrow \frac{W}{3} = \frac{W x^2}{L^2}\]

\[ \Rightarrow x = \frac{L}{\sqrt{3}}\]

\[\text { Now }, \]

\[\frac{d^2 M}{d x^2} = - \frac{2Wx}{L^2} < 0\]

\[\text { So, M is maximum at } x = \frac{L}{\sqrt{3}} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 6.2 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = (x \[-\] 5)4.


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×