Advertisements
Advertisements
Question
f(x) = - (x-1)2+2 on R ?
Solution
Given: f(x) = − (x − 1)2 + 2
Now,
(x − 1)2 \[\geq\] 0 for all x \[\in\] R
\[\Rightarrow\] f(x) = − (x − 1)2 + 2 \[\leq\] 2 for all x \[\in\] R
The maximum value of f(x) is attained when (x − 1) = 0.
(x − 1) = 0
⇒ x = 1
Therefore, the maximum value of f (x) = 2
Since f(x) can be reduced, the minimum value does not exist, which is evident in the graph also.
Hence, function f does not have a minimum value.
APPEARS IN
RELATED QUESTIONS
f(x)=sin 2x+5 on R .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?