Advertisements
Advertisements
Question
f(x) = (x \[-\] 1) (x+2)2.
Solution
\[\text { Given }: f\left( x \right) = \left( x - 1 \right) \left( x + 2 \right)^2 \]
\[ \Rightarrow f'\left( x \right) = \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right)\]
\[\text{ For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x + 2 + 2x - 2 \right) = 0\]
\[ \Rightarrow \left( x + 2 \right)\left( 3x \right) = 0\]
\[ \Rightarrow x = 0, - 2\]
Since f '(x) changes from negative to positive when x increases through 0, x = 0 is the point of local minima.
The local minimum value of f (x) at x = 0 is given by \[\left( 0 - 1 \right) \left( 0 + 2 \right)^2 = - 4\]
Since f '(x) changes sign from positive to negative when x increases through \[- 2\] ,x = \[- 2\] is the point of local maxima.
The local maximum value of f (x) at x = \[- 2\] is given by
APPEARS IN
RELATED QUESTIONS
f (x) = \[-\] | x + 1 | + 3 on R .
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Which of the following graph represents the extreme value:-