English

F(X) = X + a 2 X , a > 0 , , X ≠ 0 . - Mathematics

Advertisements
Advertisements

Question

f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .

Sum

Solution

\[\text { Given }: f\left( x \right) = x + \frac{a^2}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{a^2}{x^2}\]

\[\text { For the local maxima or minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{a^2}{x^2} = 0\]

\[ \Rightarrow x^2 = a^2 \]

\[ \Rightarrow x = \pm a \]

\[\text { Thus, x = a and x = - a are the possible points of local maxima or local minima }. \]

\[\text { Now,} \]

\[ f''\left( x \right) = \frac{a^2}{x^3}\]

\[\text { At x = a }: \]

\[ f''\left( a \right) = \frac{a^2}{\left( a \right)^3} = \frac{1}{a} > 0\]

\[\text { So, x = a is the point of local minimum } . \]

\[\text { The local minimum value is given by }\]

\[f\left( a \right) = x + \frac{a^2}{x} = a + a = 2a\]

\[At x = - a: \]

\[ f''\left( a \right) = \frac{a^2}{\left( - a \right)^3} = - \frac{1}{a} < 0\]

\[\text { So, x = - a is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( - a \right) = x + \frac{a^2}{x} = - a - a = - 2a\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 1.1 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f(x) = | sin 4x+3 | on R ?


f(x) = x\[-\] 3x .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×