English

How Should We Choose Two Numbers, Each Greater than Or Equal to − 2, Whose Sum______________ So that the Sum of the First and the Cube of the Second is Minimum? - Mathematics

Advertisements
Advertisements

Question

How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?

Sum

Solution

\[\text { Let the two numbers bexandy. Then },\]

\[x, y > - 2 \text { and }x + y = \frac{1}{2} ........ (1)\]

\[\text { Now,} \]

\[z = x + y^3 \]

\[ \Rightarrow z = x + \left( \frac{1}{2} - x \right)^3 .........\left[ \text { From eq } . \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dz}{dx} = 1 + 3 \left( \frac{1}{2} - x \right)^2 \]

\[\text { For maximum or minimum values of z, we must have }\]

\[\frac{dz}{dx} = 0\]

\[ \Rightarrow 1 + 3 \left( \frac{1}{2} - x \right)^2 = 0\]

\[ \Rightarrow \left( \frac{1}{2} - x \right)^2 = \frac{1}{3}\]

\[ \Rightarrow \left( \frac{1}{2} - x \right) = \pm \frac{1}{\sqrt{3}}\]

\[ \Rightarrow x = \frac{1}{2} \pm \frac{1}{\sqrt{3}}\]

\[\frac{d^2 z}{d x^2} = 6\left( \frac{1}{2} - x \right)\]

\[ \Rightarrow \frac{d^2 z}{d x^2} = 3 - 6x\]

\[\text { At } x = \frac{1}{2} \pm \frac{1}{\sqrt{3}}: \]

\[\frac{d^2 z}{d x^2} = 3 - 6\left( \frac{1}{2} + \frac{1}{\sqrt{3}} \right)\]

\[ \Rightarrow \frac{- 6}{\sqrt{3}} < 0\]

\[\text { Thus, z is maximum when x } = \frac{1}{2} + \frac{1}{\sqrt{3}} . \]

\[\text { At x } = \frac{1}{2} - \frac{1}{\sqrt{3}}: \]

\[\frac{d^2 z}{d x^2} = 3 - 6\left( \frac{1}{2} - \frac{1}{\sqrt{3}} \right)\]

\[ \Rightarrow \frac{6}{\sqrt{3}} > 0\]

\[\text { Thus, z is minimum when x
 }= \frac{1}{2} - \frac{1}{\sqrt{3}} . \]

\[x + y = \frac{1}{2}\]

\[\text { Substituting the value of x in eq }.\left( 1 \right),\text { we get }\]

\[y = - \frac{1}{2} + \frac{1}{\sqrt{3}} + \frac{1}{2}\]

\[y = \frac{1}{\sqrt{3}}\]

\[\text { So, the required two numbers are } \left( \frac{1}{2} - \frac{1}{\sqrt{3}} \right) \text { and } \frac{1}{\sqrt{3}} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 3 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


`f(x)=xsqrt(1-x),  x<=1` .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×