Advertisements
Advertisements
Question
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Solution
\[\text { Suppose 64 is divided into two partsxand 64-x. Then, }\]
\[z = x^3 + \left( 64 - x \right)^3 \]
\[ \Rightarrow \frac{dz}{dx} = 3 x^2 + 3 \left( 64 - x \right)^2 \]
\[\text { For maximum or minimum values of z, we must have }\]
\[\frac{dz}{dx} = 0\]
\[ \Rightarrow 3 x^2 + 3 \left( 64 - x \right)^2 = 0\]
\[ \Rightarrow 3 x^2 = 3 \left( 64 - x \right)^2 \]
\[ \Rightarrow x^2 = x^2 + 4096 - 128x\]
\[ \Rightarrow x = \frac{4096}{128}\]
\[ \Rightarrow x = 32\]
\[\text { Now, }\]
\[\frac{d^2 z}{d x^2} = 6x + 6\left( 64 - x \right) \]
\[ \Rightarrow \frac{d^2 z}{d x^2} = 384 > 0\]
\[\text { Thus, z is minimum when 64 is divided into two equal parts, 32 and 32.}\]
APPEARS IN
RELATED QUESTIONS
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = 2/x - 2/x^2, x>0`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
`f(x)=xsqrt(1-x), x<=1` .
Find the maximum and minimum values of y = tan \[x - 2x\] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .