Advertisements
Advertisements
Question
If x+y=8, then the maximum value of xy is ____________ .
Options
8
16
20
24
Solution
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x)=| x+2 | on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .