English

The Point on the Curve Y2 = 4x Which is Nearest To, the Point (2,1) is (A) 1 , 2 √ 2 (B) (1,2) (C) (1, − 2) (D) ( − 2,1) - Mathematics

Advertisements
Advertisements

Question

The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .

Options

  • \[1, 2\sqrt{2}\]

  • (1, 2)

  • (1, -2)

  • ( -2,1)

MCQ

Solution

\[\left( 1, 2 \right)\]

 

\[\text { Let the required point be } \left( x, y \right) . \text { Then }, \]

\[ y^2 = 4x\]

\[ \Rightarrow x = \frac{y^2}{4} ............. \left( 1 \right)\]

\[\text { Now,} \]

\[d = \sqrt{\left( x - 2 \right)^2 + \left( y - 1 \right)^2}\]

\[\text { Squaring both sides, we get }\]

\[ \Rightarrow d^2 = \left( x - 2 \right)^2 + \left( y - 1 \right)^2 \]

\[ \Rightarrow d^2 = \left( \frac{y^2}{4} - 2 \right)^2 + \left( y - 1 \right)^2 \]

\[ \Rightarrow d^2 = \frac{y^4}{16} + 4 - y^2 + y^2 + 1 - 2y ..............\left[ \text{From eq. }\left( 1 \right) \right]\]

\[\text { Now }, \]

\[Z = d^2 = \frac{y^4}{16} + 4 - y^2 + y^2 + 1 - 2y\]

\[ \Rightarrow \frac{dZ}{dy} = \frac{y^3}{4} - 2y + 2y - 2\]

\[ \Rightarrow \frac{dZ}{dy} = \frac{y^3}{4} - 2\]

\[ \Rightarrow \frac{y^3}{4} - 2 = 0\]

\[ \Rightarrow y^3 = 8\]

\[ \Rightarrow y = 2\]

\[\text { Substituting the value of y in }\left( 1 \right),\text {  we get }\]

\[x = 1\]

\[\text { Now,} \]

\[\frac{d^2 Z}{d y^2} = \frac{3 y^2}{4}\]

\[ \Rightarrow \frac{d^2 Z}{d y^2} = \frac{3 \left( 2 \right)^2}{4} = 3 > 0\]

\[\text { So, the nearest point is } \left( 1, 2 \right) . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 15 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x3\[-\] 6x2 + 9x + 15

 


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×