Advertisements
Advertisements
Question
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Solution
\[\text { Let the point } \left( x, y \right) \text { on the curve} x^2 = 4y \text { be nearest to } \left( 0, 5 \right) . \text { Then }, \]
\[ x^2 = 4y\]
\[ \Rightarrow y = \frac{x^2}{4} ............ \left( 1 \right)\]
\[\text { Also }, \]
\[ d^2 = \left( x \right)^2 + \left( y - 5 \right)^2 ..........\left[\text {Using distance formula} \right]\]
\[\text { Now,} \]
\[Z = d^2 = \left( x \right)^2 + \left( y - 5 \right)^2 \]
\[ \Rightarrow Z = \left( x \right)^2 + \left( \frac{x^2}{4} - 5 \right)^2 .............\left[ \text {Using eq. } \left( 1 \right) \right]\]
\[ \Rightarrow Z = x^2 + \frac{x^4}{16} + 25 - \frac{5 x^2}{2}\]
\[ \Rightarrow \frac{dZ}{dy} = 2x + \frac{4 x^3}{16} - 5x\]
\[\text {For maximum or minimum values of Z, we must have }\]
\[\frac{dZ}{dy} = 0\]
\[ \Rightarrow 2x + \frac{4 x^3}{16} - 5x = 0\]
\[ \Rightarrow \frac{4 x^3}{16} = 3x\]
\[ \Rightarrow x^3 = 12x\]
\[ \Rightarrow x^2 = 12\]
\[ \Rightarrow x = \pm 2\sqrt{3}\]
\[\text {Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]
\[y = 3\]
\[\text { Now,} \]
\[\frac{d^2 Z}{d y^2} = 2 + \frac{12 x^2}{16} - 5\]
\[ \Rightarrow \frac{d^2 Z}{d y^2} = 9 - 3 = 6 > 0\]
\[\text { So, the required nearest point is } \left( \pm 2\sqrt{3}, 3 \right) .\]
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 (x \[-\] 1)2 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = x1/x.
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Which of the following graph represents the extreme value:-