English

If F(X) Attains a Local Minimum at X=C, Then Write the Values of F' (C) and F'' (C). - Mathematics

Advertisements
Advertisements

Question

If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.

Sum

Solution

If f(x) attains a local minimum at x = c, then the first order derivative of the function at the given point must be equal to zero, i.e.
`f'(x) = 0" at "x = c`

`⇒ f '(c) = 0`
The second order derivative of the function at the given point must be greater than zero, i.e.
`f''(c) > 0`
shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.6 [Page 80]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.6 | Q 3 | Page 80

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x) = x\[-\] 1 on R .


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = (x - 1) (x + 2)2.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = x1/x.


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×