English

The Sum of the Surface Areas of a Cuboid with Sides X, 2x And \[\Frac{X}{3}\] and a Sphere is Given to Be Constant - Mathematics

Advertisements
Advertisements

Question

The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.

Solution

Surface area of cuboid = 2 (lb + bh + hl)

\[= \left( 2 x^2 + \frac{2 x^2}{3} + \frac{x^2}{3} \right)\]

\[ = 6 x^2\]

Let radius of the sphere be r,
Surface area of sphere = \[4\pi r^2\]

Therefore,

\[6 x^2 + 4\pi r^2 = k(\text { constant })\] .....(i)
Now, volume of both figures will be \[V = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3\]

Putting the value of r from the equation (i), 

\[V = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{k - 6 x^2}{4\pi} \right)^\frac{3}{2}\]

For minimum volume \[\frac{dV}{dx} = 0\], so

\[\frac{dV}{dx} = 2 x^2 + \left( \frac{4}{3}\pi \right) \left( \frac{1}{4\pi} \right)^\frac{3}{2} . \frac{3}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( - 12x \right) = 0\]

\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( 6x \right)\]

\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( 4\pi r^2 \right)^\frac{1}{2} \left( 6x \right) \left[ \text { since }, k - 6 x^2 = 4\pi r^2 \right]\]

\[ \Rightarrow x = 3r\]

Hence proved.
Further, minimum value of sum of their volume is

\[V_\min = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3 \]

\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{x}{3} \right)^3 \left[ r = \frac{x}{3} \right]\]

\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi\frac{x^3}{27} \]

\[ = \frac{2}{3} x^3 \left( 1 + \frac{2}{27} \right)\]

\[ = \frac{58}{81} x^3 \]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = x/2+2/x, x>0 `.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×