Advertisements
Advertisements
Question
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
Solution
\[\text { Given: } \hspace{0.167em} y = - x^3 + 3 x^2 + 2x - 27 ............\left( 1 \right)\]
\[\text { Slope } = \frac{dy}{dx} = - 3 x^2 + 6x + 2\]
\[\text { Now,} \]
\[M = - 3 x^2 + 6x + 2\]
\[ \Rightarrow \frac{dM}{dx} = - 6x + 6\]
\[\text { For maximum or minimum values of M, we must have }\]
\[\frac{dM}{dx} = 0\]
\[ \Rightarrow - 6x + 6 = 0\]
\[ \Rightarrow 6x = 6\]
\[ \Rightarrow x = 1\]
\[\text { Substituing the value of x in eq. } \left( 1 \right),\text { we get }\]
\[y = - 1^3 + 3 \times 1^2 + 2 \times 1 - 27 = - 23\]
\[\frac{d^2 M}{d x^2} = - 6 < 0\]
\[\text { So, the slope is maximum when x = 1 and y } = - 23 . \]
\[ \therefore At \left( 1, - 23 \right): \]
\[\text { Maximum slope } = - 3 \left( 1 \right)^2 + 6\left( 1 \right) + 2 = - 3 + 6 + 2 = 5\]
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=sin 2x+5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The maximum value of x1/x, x > 0 is __________ .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-