English

Of All the Closed Right Circular Cylindrical Cans of Volume 128π Cm3, Find the Dimensions of the Can Which Has Minimum Surface Area. - Mathematics

Advertisements
Advertisements

Question

Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.

Solution

Let and h be the radius and height of the cylindrical can respectively.
Therefore, the total surface area of the closed cylinder is given by

\[S = 2\pi r^2 + 2\pi rh\]        ...(1)

Given, volume of the can = 128π cm3

Also, volume (V) = \[\pi r^2 h\]

\[\therefore h = \frac{128}{r^2}\]                ... (2)

Putting the value of h in equation (1), we get:

\[S = 2\pi r^2 + 2\pi r \times \frac{128}{r^2}\]

\[\Rightarrow S = 2\pi r^2 + 2\pi \times \frac{128}{r}\]

Now, differentiating S with respect to r, we get:

\[\frac{dS}{dr} = 4\pi r - 2\pi \times \frac{128}{r^2}\]

Substituting 

\[\frac{dS}{dr} = 0\]  for the critical points, we get:

\[4\pi r - 2\pi \times \frac{128}{r^2} = 0\]

\[\Rightarrow r^3 = 64 \Rightarrow r = 4\]

Now, second derivative of S is given by

\[\frac{d^2 S}{d r^2} = 4\pi - 2\pi \times \left( - 2 \right)\frac{128}{r^3} = 4\pi + 4\pi \times \frac{128}{64} > 0 \left( \because r = 4 \right)\]

Thus, the total surface area of the cylinder is minimum when r = 4.
From equation (2), we have:

\[h = \frac{128}{4^2} = 8\]

Thus, the dimensions of the cylindrical can are r = 4 and h = 8.
shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = \[\frac{1}{x^2 + 2}\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = xex.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The minimum value of x loge x is equal to ____________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×