Advertisements
Advertisements
Question
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
Solution
\[\text { Given }: f\left( x \right) = x\sqrt{2 - x^2}\]
\[ \Rightarrow f'\left( x \right) = \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}} = 0\]
\[ \Rightarrow \sqrt{2 - x^2} = \frac{x}{\sqrt{2 - x^2}}\]
\[ \Rightarrow 2 - x^2 = x^2 \]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1 \]
\[\text { Thus, x = 1 and x = - 1 are the possible points of local maxima or local minima }. \]
\[\text { Now }, \]
\[f''\left( x \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\sqrt{2 - x^2} + \frac{x^3}{\sqrt{2 - x^2}}}{2 - x^2} \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\left( 2 - x^2 \right) + x^3}{\left( 2 - x^2 \right)\sqrt{2 - x^2}} \right)\]
\[\text { At }x = 1: \]
\[ f''\left( 1 \right) = \frac{- 1}{\sqrt{2 - 1^2}} - \left[ \frac{2\left( 2 - 1^2 \right) + 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]
\[\text { So, x = 1 is the point of local maximum }. \]
\[\text { The local maximum value is given by }\]
\[f\left( 4 \right) = 1\sqrt{2 - 1^2} = 1\]
\[\text { At }x = - 1: \]
\[ f''\left( - 1 \right) = \frac{1}{\sqrt{2 - 1^2}} + \left[ \frac{2\left( 2 - 1^2 \right) - 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = 1 + 1 = 2 > 0\]
\[\text { So, x = - 1 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( - 1 \right) = - 1\sqrt{2 - 1^2} = - 1\]
APPEARS IN
RELATED QUESTIONS
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = (x - 1) (x + 2)2.
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Which of the following graph represents the extreme value:-