English

The Minimum Value of X Log E X is (A) E (B) 1/E (C) 1 (D) None of These - Mathematics

Advertisements
Advertisements

Question

The minimum value of \[\frac{x}{\log_e x}\] is _____________ .

Options

  • e

  • 1/e

  • 1

  • none of these

MCQ

Solution

e

 

\[\text { Given }: f\left( x \right) = \frac{x}{\log_e x}\]

\[ \Rightarrow f'\left( x \right) = \frac{\log_e x - 1}{\left( \log_e x \right)^2}\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{\log_e x - 1}{\left( \log_e x \right)^2} = 0\]

\[ \Rightarrow \log_e x - 1 = 0\]

\[ \Rightarrow \log_e x = 1\]

\[ \Rightarrow x = e\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{- 1}{x \left( \log_e x \right)^2} + \frac{2}{x \left( \log_e x \right)^3}\]

\[ \Rightarrow f''\left( e \right) = \frac{- 1}{e} + \frac{2}{e} = \frac{1}{e} > 0\]

\[\text { So, x = e is a local minima } . \]

\[ \therefore \text { Minimum value of } f\left( x \right) = \frac{e}{\log_e e} = e\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 3 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) =  (x \[-\] 1) (x+2)2


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The minimum value of x loge x is equal to ____________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×