Advertisements
Advertisements
Question
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Solution
\[\text { Given:} f\left( x \right) = - \left( x - 1 \right)^3 \left( x + 1 \right)^2 \]
\[ \Rightarrow f'\left( x \right) = - \left[ 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^3 \right]\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow - 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 - 2\left( x + 1 \right) \left( x - 1 \right)^3 = 0\]
\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3\left( x + 1 \right) - 2\left( x - 1 \right) \right] = 0\]
\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3x - 3 - 2x + 2 \right] = 0\]
\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 5x - 1 \right] = 0\]
\[ \Rightarrow x = 1, - 1 \text { and }\frac{- 1}{5}\]
\[\text { Thus, x = 1, x = - 1 and } x = \frac{- 1}{5} \text { are the possible points of local maxima or local minima }. \]
\[\text { Now,} \]
\[f''\left( x \right) = - \left[ 3\left\{ 2\left( x - 1 \right) \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^2 \right\} + 2\left\{ \left( x - 1 \right)^3 + 3 \left( x - 1 \right)^2 \left( x + 1 \right) \right\} \right]\]
\[ = - 6\left( x - 1 \right) \left( x + 1 \right)^2 + 6\left( x + 1 \right) \left( x - 1 \right)^2 - 2 \left( x - 1 \right)^3 - 6 \left( x - 1 \right)^2 \left( x + 1 \right)\]
\[\text { At x} = 1: \]
\[ f''\left( 1 \right) = - 6\left( 1 - 1 \right) \left( 1 + 1 \right)^2 + 6\left( 1 + 1 \right) \left( 1 - 1 \right)^2 - 2 \left( 1 - 1 \right)^3 - 6 \left( 1 - 1 \right)^2 \left( 1 + 1 \right) = 0\]
\[\text { So, it is a point of inflexion } . \]
\[\text { At } x = - 1: \]
\[ f''\left( - 1 \right) = - 6\left( - 1 - 1 \right) \left( - 1 + 1 \right)^2 + 6\left( - 1 + 1 \right) \left( - 1 - 1 \right)^2 - 2 \left( - 1 - 1 \right)^3 - 6 \left( - 1 - 1 \right)^2 \left( - 1 + 1 \right) = 16 > 0\]
\[\text{ So, x = - 1 is the point of local minimum }. \]
\[\text { The local minimum value is given by } \]
\[f\left( - 1 \right) = - \left( 1 - 1 \right)^3 \left( - 1 + 1 \right)^2 = 0\]
\[\text { At } x = - \frac{1}{5}: \]
\[ f''\left( - \frac{1}{5} \right) = - 6\left( - \frac{1}{5} - 1 \right) \left( - \frac{1}{5} + 1 \right)^2 + 6\left( - \frac{1}{5} + 1 \right) \left( - \frac{1}{5} - 1 \right)^2 + 2 \left( - \frac{1}{5} - 1 \right)^3 - 6 \left( - \frac{1}{5} - 1 \right)^2 \left( - \frac{1}{5} + 1 \right)\]
\[ = \frac{576}{125} + \frac{384}{125} - \frac{432}{125} - \frac{864}{125} = \frac{- 336}{125} < 0\]
\[\text { So,} x = - \frac{1}{5} \text { is the point of local maximum }. \]
\[\text { The local maximum value is given by }\]
\[f\left( - \frac{1}{5} \right) = - \left( - \frac{1}{5} - 1 \right)^3 \left( - \frac{1}{5} + 1 \right)^2 = - \left( \frac{- 216}{125} \right)\left( \frac{16}{25} \right) = \frac{3465}{3125}\]
APPEARS IN
RELATED QUESTIONS
f(x) = - (x-1)2+2 on R ?
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 5)4.
f(x) = (x \[-\] 1) (x+2)2.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
`f(x)=xsqrt(1-x), x<=1` .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The maximum value of x1/x, x > 0 is __________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.