Advertisements
Advertisements
Question
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
Options
`ab<c^2/4`
`ab>=c^2/4`
`ab>=c/4`
Solution
\[ \ ab \geq \frac{c^2}{4}\]
\[\text { Given }: ax + \frac{b}{x} \geq c\]
\[\text { Minimum value of} ax + \frac{b}{x} = c\]
\[\text { Now }, \]
\[f\left( x \right) = ax + \frac{b}{x}\]
\[ \Rightarrow f'\left( x \right) = a - \frac{b}{x^2}\]
\[\text { For a local maxima or a local minima, we must have}\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow a - \frac{b}{x^2} = 0\]
\[ \Rightarrow a x^2 - b = 0\]
\[ \Rightarrow a x^2 = b\]
\[ \Rightarrow x^2 = \frac{b}{a}\]
\[ \Rightarrow x = \pm \frac{\sqrt{b}}{\sqrt{a}}\]
\[f''\left( x \right) = \frac{2b}{x^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b \left( a \right)^\frac{3}{2}}{\left( b \right)^\frac{3}{2}} > 0\]
\[\text { So }, x = \frac{\sqrt{b}}{\sqrt{a}} \text { is a local minima } . \]
\[ \therefore f\left( \frac{\sqrt{b}}{\sqrt{a}} \right) = a\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{a}\sqrt{a}\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{\sqrt{b}\sqrt{b}}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{ab} + \sqrt{ab} \geq c\]
\[ \Rightarrow 2\sqrt{ab} \geq c\]
\[ \Rightarrow \frac{c}{2} \leq \sqrt{ab}\]
\[ \Rightarrow \frac{c^2}{4} \leq ab\]
APPEARS IN
RELATED QUESTIONS
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = (x \[-\] 5)4.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = (x - 1) (x + 2)2.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .