English

Manufacturer Can Sell X Items at a Price of Rupees ( 5 − X 100 ) Each. the Cost Price is Rs ( X 5 + 500 ) . Find the Number of Items He Should Sell to Earn Maximum Profit. - Mathematics

Advertisements
Advertisements

Question

Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 

Sum

Solution

\[\text { Profit =S.P. - C.P.}\]

\[ \Rightarrow P = x\left( 5 - \frac{x}{100} \right) - \left( 500 + \frac{x}{5} \right)\]

\[ \Rightarrow P = 5x - \frac{x^2}{100} - 500 - \frac{x}{5}\]

\[ \Rightarrow \frac{dP}{dx} = 5 - \frac{x}{50} - \frac{1}{5}\]

\[\text { For maximum or minimum values of P, we must have }\]

\[\frac{dP}{dx} = 0\]

\[ \Rightarrow 5 - \frac{x}{50} - \frac{1}{5} = 0\]

\[ \Rightarrow \frac{24}{5} = \frac{x}{50}\]

\[ \Rightarrow x = \frac{24 \times 50}{5}\]

\[ \Rightarrow x = 240\]

\[\text { Now, }\]

\[\frac{d^2 P}{d x^2} = \frac{- 1}{50} < 0\]

\[\text { So, the profit is maximum if 240 items are sold.}\]

shaalaa.com

Notes

The solution given in the book is incorrect. The solution here is created according to the question given in the book.

  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 37 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = xx .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×