Advertisements
Advertisements
Question
f(x) = x3 \[-\] 6x2 + 9x + 15 .
Solution
\[\text { Given: } f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]
\[ \Rightarrow f'\left( x \right) = 3 x^2 - 12x + 9\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 3 x^2 - 12x + 9 = 0\]
\[ \Rightarrow x^2 - 4x + 3 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) = 0\]
\[ \Rightarrow x = 1 \text { or } 3\]
Sincef '(x) changes from negative to positive when x increases through 3, x = 3 is the point of local minima.
The local minimum value of f (x) at x = 3 is given by \[\left( 3 \right)^3 - 6 \left( 3 \right)^2 + 9\left( 3 \right) + 15 = 27 - 54 + 27 + 15 = 15\]
Since f '(x) changes from positive to negative when x increases through 1, x = 1 is the point of local maxima.
APPEARS IN
RELATED QUESTIONS
f(x)=| x+2 | on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 (x \[-\] 1)2 .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = xex.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Find the maximum and minimum values of y = tan \[x - 2x\] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
If x+y=8, then the maximum value of xy is ____________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .