हिंदी

Divide 64 into Two Parts Such that the Sum of the Cubes of Two Parts is Minimum. - Mathematics

Advertisements
Advertisements

प्रश्न

Divide 64 into two parts such that the sum of the cubes of two parts is minimum.

योग

उत्तर

\[\text { Suppose 64 is divided into two partsxand 64-x. Then, }\]

\[z = x^3 + \left( 64 - x \right)^3 \]

\[ \Rightarrow \frac{dz}{dx} = 3 x^2 + 3 \left( 64 - x \right)^2 \]

\[\text { For maximum or minimum values of z, we must have }\]

\[\frac{dz}{dx} = 0\]

\[ \Rightarrow 3 x^2 + 3 \left( 64 - x \right)^2 = 0\]

\[ \Rightarrow 3 x^2 = 3 \left( 64 - x \right)^2 \]

\[ \Rightarrow x^2 = x^2 + 4096 - 128x\]

\[ \Rightarrow x = \frac{4096}{128}\]

\[ \Rightarrow x = 32\]

\[\text { Now, }\]

\[\frac{d^2 z}{d x^2} = 6x + 6\left( 64 - x \right) \]

\[ \Rightarrow \frac{d^2 z}{d x^2} = 384 > 0\]

\[\text { Thus, z is minimum when 64 is divided into two equal parts, 32 and 32.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 2 | पृष्ठ ७२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


`f(x)=xsqrt(1-x),  x<=1` .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×