हिंदी

Prove that F(X) = Sinx + √ 3 Cosx Has Maximum Value at X = π 6 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?

योग

उत्तर

\[\text{We have }, \]

\[f\left( x \right) = \sin x + \sqrt{3}\cos x\]

\[ \Rightarrow f'\left( x \right) = \cos x + \sqrt{3}\left( - \sin x \right)\]

\[ \Rightarrow f'\left( x \right) = \cos x - \sqrt{3}\sin x\]

\[\text { For } f\left( x \right) \text { to have maximum or minimum value, we must have } f'\left( x \right) = 0\]

\[ \Rightarrow cos x - \sqrt{3}sin x = 0\]

\[ \Rightarrow cos x = \sqrt{3}sin x\]

\[ \Rightarrow \cot x = \sqrt{3}\]

\[ \Rightarrow x = \frac{\pi}{6}\]

\[\text { Also }, f''\left( x \right) = -\text {  sin } x - \sqrt{3}\cos x\]

\[ \Rightarrow f''\left( \frac{\pi}{6} \right) = - \sin\frac{\pi}{6} - \sqrt{3}\cos\frac{\pi}{6} = - \frac{1}{2} - \sqrt{3}\left( \frac{\sqrt{3}}{2} \right) = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]

\[\text { So, x } = \frac{\pi}{6} \text { is point of maxima } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 8 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 1 on R .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

Write sufficient conditions for a point x = c to be a point of local maximum.


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = x1/x.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×