Advertisements
Advertisements
प्रश्न
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
विकल्प
1
2
\[2\frac{1}{2}\]
\[3\frac{1}{3}\]
उत्तर
2
\[\text { Given }: xy = 1\]
\[ \Rightarrow y = \frac{1}{x}\]
\[f\left( x \right) = x + \frac{1}{x}\]
\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]
\[ \Rightarrow x^2 - 1 = 0\]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1\]
\[ \Rightarrow x = 1 ..............\left( \text { Given }: x > 1 \right)\]
`rArry=1`
\[\text { Now,} \]
\[f''\left( x \right) = \frac{2}{x^3}\]
\[ \Rightarrow f''\left( 1 \right) = 2 > 0\]
\[\text { So, x = 1 is a local minima } . \]
\[ \therefore \text { Minimum value of } f\left( x \right) = f\left( 1 \right) = 1 + 1 = 2\]
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 (x \[-\] 1)2 .
f(x) = (x \[-\] 1) (x+2)2.
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) = (x - 1) (x + 2)2.
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.